Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35884972

RESUMO

(1) Background: The development of mitochondrial medicine has been severely impeded by a lack of effective therapies. (2) Methods: To better understand Mitochondrial Encephalopathy Lactic Acidosis Syndrome Stroke-like episodes (MELAS) syndrome, neuronal cybrid cells carrying different mutation loads of the m.3243A > G mitochondrial DNA variant were analysed using a multi-omic approach. (3) Results: Specific metabolomic signatures revealed that the glutamate pathway was significantly increased in MELAS cells with a direct correlation between glutamate concentration and the m.3243A > G heteroplasmy level. Transcriptomic analysis in mutant cells further revealed alterations in specific gene clusters, including those of the glutamate, gamma-aminobutyric acid pathways, and tricarboxylic acid (TCA) cycle. These results were supported by post-mortem brain tissue analysis from a MELAS patient, confirming the glutamate dysregulation. Exposure of MELAS cells to ketone bodies significantly reduced the glutamate level and improved mitochondrial functions, reducing the accumulation of several intermediate metabolites of the TCA cycle and alleviating the NADH-redox imbalance. (4) Conclusions: Thus, a multi-omic integrated approach to MELAS cells revealed glutamate as a promising disease biomarker, while also indicating that a ketogenic diet should be tested in MELAS patients.

2.
Genes (Basel) ; 13(7)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35885985

RESUMO

Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation and exome sequencing, we identified for the first time heterozygous PMPCA variants having a causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance. Functional assays on patients' fibroblasts show a hyperconnection of the mitochondrial network and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells, and consequently lead to their progressive degeneration.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Autossômica Dominante , Humanos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Mitocondriais/genética , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/metabolismo , Atrofia Óptica Autossômica Dominante/patologia , Peptídeo Hidrolases
3.
Brain Commun ; 3(2): fcab063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056600

RESUMO

Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29382228

RESUMO

OBJECTIVE: Sporadic amyotrophic lateral sclerosis (sALS) is a fatal neurodegenerative disorder affecting upper and lower motor neurons. In view of the heterogeneous presentation of the disease, one of the current challenges is to identify diagnostic and prognostic markers in order to diagnose sALS at early stage and to stratify patients in trials. In this study, we sought to identify cytological hallmarks of sALS in patient-derived fibroblasts with the aim of finding new clinical-related markers of the disease. METHODS: Primary fibroblasts were prospectively collected from patients affected with classical, rapid, and slow forms of sALS. TDP-43 localization, cytoskeleton distribution, mitochondrial network architecture, and stress granules formation were analyzed using 3D fluorescence microscopy and new super-resolution imaging. Intracellular reactive oxygen species (ROS) production was assessed using live imaging techniques. RESULTS: Six sALS patients (two classical, two rapid, and two slow) and four age-matched controls were included. No difference in fibroblasts cell growth, morphology, and distribution was noticed. The analysis of TDP-43 did not reveal any mislocalization nor aggregation of the protein. The cytoskeleton was harmoniously distributed among the cells, without any inclusion noticed, and no difference was observed regarding the mitochondrial network architecture. Basal ROS production and response to induced stress were similar among patient and control fibroblasts. CONCLUSIONS: ALS cytological lesions are absent in patient-derived fibroblasts and thus cannot contribute as diagnostic nor prognostic markers of the disease.


Assuntos
Esclerose Amiotrófica Lateral/patologia , Fibroblastos/patologia , Idoso , Esclerose Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proliferação de Células/genética , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Imageamento Tridimensional , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Proteína FUS de Ligação a RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...